RVMS Examination Content

The following is a content outline for each examination administered by the AAVR for the RVMS Certification Program. The percentage ranges that are shown are an indication of approximately how many questions on the exam may be included from that section of the outline.

The AAVR does not endorse any specific source of information for education programs, nor does it sponsor or endorse any registry review course. No attempt is made to list literature references because of the multiplicity of such information and to avoid the implication that listed works are in any way used as a basis for the examination.

- Sonography Principles and Instrumentation
- Abdomen
- Echocardiography
- Cardiovascular Principles
- Neurosonology
- Ultrasound Physics/ Instrumentation
- Vascular Principles/ Instrumentation

Sonography Principles and Instrumentation
Content Outline

I. Patient care, safety and communication [8-12%]
A. Patient identification / documentation
B. Patient interaction
C. Verification of requested examination
D. Emergency situations
E. Universal precautions
F. Bioeffects and ALARA

II. Physics principles [18-22%]
A. Properties of ultrasound waves
B. Interactions of sound with tissue
C. Power, intensity, and amplitude
D. Units of measurement

III. Ultrasound transducers [15-20%]
A. Transducer construction and characteristics
B. Transducer types (sector, linear, phased arrays, etc.)
C. Spatial resolution
D. Transducer selection

IV. Pulse-echo instrumentation [25-30%]
A. Display modes and their formation (A-mode,B-mode, M-mode, 3-D, etc.)
B. Transmission of ultrasound
C. Reception of ultrasound (preprocessing)
D. Beam former
E. Postprocessing of ultrasound signals
F. Pulse-echo imaging artifacts
G. Tissue harmonic imaging
H. Realtime ultrasound instrumentation
I. Recording and storage devices

V. Doppler instrumentation and hemodynamics [15-20%]
A. Doppler effect
B. Factors influencing the magnitude of the Doppler shift frequency
C. Continuous wave and pulsed wave Doppler
D. Doppler PRF, Nyquist limit and aliasing
E. Color flow imaging
F. Power Doppler imaging
G. Duplex Doppler imaging
H. Spectral analysis
I. Doppler artifacts
J. Hemodynamics (laminar and turbulent flow, velocity profiles, energy, etc.)

VI. Quality assurance / quality control of equipment [8-12%]
A. Preventive maintenance
B. Malfunctions Abdomen Outline

I. Liver (16%-24%)
A. Anatomy
B. Technique
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Parenchymal disease
     1. Focal and Diffuse abnormalities
     2. Acute and Chronic processes
F. MassesBenign and Malignant
G. Cysts
     1. Simple and Complex      2. Benign and Malignant
H. Infection-Focal and Diffuse abnormalities

II. Gallbladder and Biliary Tree (10%-18%) A. Anatomy
B. Technique
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Biliary dilatation
F. MassesBenign and Malignant
G. Cholelithiasis-choledocholithiasis
H. Cholecystitis (Acute and Chronic)

III. Pancreas (6%-14%)
A. Anatomy
B. Technique
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Parenchymal disease
     1. Focal and Diffuse abnormalities
     2. Acute and Chronic processes
F. Masses-Benign and Malignant
G. Cysts-Simple and Complex, including Pseudocysts

IV. Kidneys and Urinary Tract (16%-24%)
A. Anatomy
B. Technique
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Renal Parenchymal Disease
     1. Focal and Diffuse abnormalities
     2. Chronic and Acute processes
F. Masses-Benign and Malignant, including Pseudomasses
G. Cysts
     1. Simple and complex
     2. Benign and Malignant
H. Infection
I. Calculi
J. Urinary tract obstruction
K. Ischemia
L. Anomalies
M. Kidney Transplants Pre-surgical and Post-surgical evaluation
N. Urinary BladderMasses, Calculi, and Inflammatory processes (including evaluation of the ureters, urethra, and urachal anomalies)

V. Scrotum (3%-7%)
A. Anatomy
B. Technique
C. Laboratory Values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Parenchymal Disease
     1. Focal and Diffuse abnormalities
 
     2. Chronic and Acute processes, including Testicular Torsion
F. Masses-Benign and Malignant, including Cryptorchidism
G. Cysts and Fluid Collections-Acute and Chronic
H. Infection (Acute and Chronic)

VI. Prostate (1%-2%)
A. Anatomy
B. Technique
C. Laboratory Values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Parenchymal Disease
     1. Diffuse and Focal abnormalities
     2. Acute and Chronic processes
F. Masses
G. Cysts
H. Infection

VII. Spleen (1%-5%)
A. Anatomy
B. Technique
C. Laboratory Values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Parenchymal Disease Focal and Diffuse abnormalities
F. Masses (Benign and Malignant)
G. Cysts
H. Infection
I. Hematoma
J. Infarction

VIII. Retroperitoneum (3%-7%)
A. Anatomy
B. Technique
C. Laboratory Values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Masses and Lymphdenopathy (Benign and Malignant)
F. Hematoma
G. Adrenal Gland
     1. Normal sonographic appearance
     2. Benign and Malignant abnormalities

IX. Abdominal Vascular (7%-15%)
A. Anatomy
B. Technique (including Color Doppler, Power Doppler and duplex Doppler)
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Aneurysm
F. Thrombosis (including Portal Vein, Splenic Vein and Renal Vein Thrombosis)
G. Shunts Arteriovenous, Porto-systemic, Surgical and Radiological H. Doppler Spectral Waveform Analysis (including Stenosis, Thrombosis, Portal Hypertension, and Direction of flow)
I. Color Doppler and Power Doppler (including Stenosis, Thrombosis, Portal Hypertension, and Direction of flow)

X. Gastrointestinal Tract (1%-5%)
A. Anatomy
B. Technique
C. Laboratory Values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Infection (including Acute Appendicitis and Abscess)
F. MassesBenign and Malignant
G. ObstructionSmall Bowel and Colon obstruction
H. HerniaI. Peritoneal Fluid (including Inflammatory Fluid Collections)

XI. Neck (1%-3%)
A. Anatomy
B. Technique
C. Laboratory values
D. Indications (including clinical symptoms, clinical correlation and associated complications)
E. Thyroid and parathyroid parenchymal disease
     1. Focal and Diffuse abnormalities
     2. Chronic and Acute processes
F. Thyroid masses (Benign and Malignant)
G. Thyroid cysts
     1. Simple and Complex
     2. Benign and Malignant
H. Parathyroid masses
I. Infection
J. Lymph nodes  (Benign and Malignant)
K. Carotid Artery and Jugular VeinIncluding Sonographic Identification

XII. Abdominal wall, superficial and muscular structures(1%-5%)

A. Anatomy

B. Techniques

C. Laboratory Values

D. Indications (including clinical symptoms, clinical correlation and associated complications)

E. Masses

F. Cysts and Fluid Collections

G. Infection

H. Hematomas

I . Vessels (including Iatrogenic Vascular Injuries)

J. Musculoskeletal (including Normal and Ruptured tendons, such as Patellar and Achilles tendons, and Foreign Bodies)

K. Non-echocardiography Chest (including Pleural and Pericardial Effusions and Masses)

 

 

XIII. Instrumentation (1%-2%)

A. Techniques

B. Transducers

C. Machine settings

D. Image recording

E. Artifacts

F. Quality Assurance

G. Harmonic Imaging

  • 1. Physics and clinical applications

 

XIV. Invasive Procedures (1%-2%)

A. Pre-procedure preparation

B. Procedural related issues

C. Indications (including clinical symptoms, clinical correlation and associated complications)

Echocardiography Content Outline

I. Anatomy and Physiology (5%-10%)

 A. Ventricular Wall Segments

B. Nomenclature 

  • 1. Subdivisions of ventricles
  • 2. Valves
  • 3. Great vessels

C. Coronary Sinus (vs. Descending Aorta)

 D. Coronary Arteries  

E. Normal Pressures (in All Four Cardiac Chambers and Great Vessels)

  •  1. Phases of cardiac cycle
a. electrical/mechanical systole  
b. filling phases of diastole   
  • 2. Timing of events (relative to ECG)

F. Pulmonary Veins  

G. Miscellaneous

 

II. Technique (10%-20%)  

A. Use of Equipment Controls  

B. Recognition of Technical Artifacts  

C. Recognition of Setup Errors  

D. Use of Contrast Agents

 E. Provocative Maneuvers  

F. Best Approach for Doppler Studies  

G. Miscellaneous  

H. Two-dimensional Study I

. M-mode Patterns

 

III. Valvular Heart Disease (15%-25%)

A. Mitral Valve

  • 1. Physiology/hemodynamics
  • 2. Mitral stenosis

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vessels ])

  • 3. Mitral regurgitation

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria (2) ventricles (3) cardiac vessels (4) pulmonary veins

e. mitral prolapse

f. chordae rupture

g. flail leaflet

h. mitral annular calcification

i. mixed mitral valve disease )(MS/MR)

B. Aortic Valve

  • 1. Physiology/hemodynamics
  • 2. Aortic stenosis

a . M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vesselse. etiologies(1) congenital(2) degenerative(3) endocarditis

e. mixed lesions (AS/AR)

f. aortic stenosis

  • 3. Aortic regurgitation

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vessels

e. etiologies(1) congenital(2) infectious(3) secondary (e.g., aortic root abnormality)(4) flail

f. mixed (AS/AR)

C. Tricuspid Valve

  • 1. Physiology/hemodynamics
  • 2. Tricuspid stenosis/ regurgitation

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vesselse. etiologies

f. with mixed lesions

  • 3. Tricuspid regurgitation

a. M-mode

b. two-dimensional Study

c. Doppler Study

d. effects on:(1) atria(2) ventricles(3) cardiac vessels

e. etiologies(1) degenerative(2) tricuspid prolapse (3) chordal rupture(4) flail leaflet

D. Pulmonary Valve

  • 1. Physiology/hemodynamics
  • 2. Pulmonary stenosis

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vessels

e. etiologies(1) congenital

  • 3. Pulmonary regurgitation

a. M-mode

b. two-dimensional study

c. Doppler study

d. effects on:(1) atria(2) ventricles(3) cardiac vesselse. etiologies(1) pulmonary hypertension 

f. mixed PS/PIE.

Endocarditis

  • 1. Physiology/hemodynamics
  • 2. Involvement of adjacent cardiac structures
  • 3. M-mode patterns
  • 4. Two-dimensional study

 

 

IV. Pericardial Disease (2%-8%)

 

A. Constrictive

  • 1. Physiology/hemodynamics
  • 2. Etiologies
  • 3. Echocardiographic manifestations

B. Effusion

  • 1. Physiology/hemodynamics a. tamponade
  • 2. Etiologies
  • 3. Differentiation from pleural effusion

C. Tumor

  • 1. Primary
  • 2. Metastatic

D. Miscellaneous

  • 1. Adhesions
  • 2. Nonspecific thickening

3. False positives

 

V. Systemic & Pulmonary Hypertensive Heart Disease (1%-3%)

A. Systemic

  • 1. Physiology/hemodynamics
  • 2. Echocardiographic findings

B. Pulmonary

  • 1. Physiology/hemodynamics
  • 2. Doppler assessment a. from tricuspid regurgitant jet b. from pulmonary artery acceleration time
  • 3. Image findings

 

 

VI. Cardiomyopathies (5%-15%)

A. Hypertrophic

  • 1. With/without dynamic obstruction
  • 2. Associated abnormalities

a. mitral regurgitant/left atrial enlargement

B. Dilated

  • 1. Etiologies
  • 2. Associated findings

a. mitral regurgitation

b. other chamber enlargement

c. thrombus

C. Restrictive

  • 1. Etiologies

2. Diastolic dysfunction

 

VII. Ventricular Function (10%-20%)

A. Wall Motion Abnormalities

B. Associated Findings

  • 1. Thrombi
  • 2. Changes in appearance of involved myocardium
  • 3. Valve dysfunction
  • 4. Pericardial effusion
  • 5. Cardiomyopathy
  • 6. Right ventricular involvement

C. Diastolic Function

D. Normal LVF

 

VIII. Cardiac Tumors (2%-5%)

A. Primary vs. secondary (metastatic)

B. Pericardial Involvement

C. Differentiation from Other Masses or Artifacts

D. Complications

 

IX. Miscellaneous (5%-10%)

A. Arrhythmias and Conduction Disturbances

  • 1. Effect on valve motion
  • 2. Production of wall motion abnormalities
  • 3. Effect on Doppler flow velocity waveforms

B. Parameters of Left Ventricular Function

C. Right Side Volume Overload

D. Other

 

X. Congenital Heart Disease in the Adult (3%-7%)

 

A. Categories

  • 1. Aortic valve

a. bicuspid

b. supravalvular/subvalvular stenosis

  • 2. Pulmonic stenosis
  • 3. Mitral valve dysplasia
  • 4. Atrial septal defecta. typesb. means of assessing(1) contrast(2) Dopplerc. physiology/hemodynamics(1) associated chamber enlargement(2) direction for shunt flow
  • 5. Ventricular septal defect

a. types

b. means of assessing(1) contrast(2) Dopplerc. physiology/hemodynamics(1) associated chamber enlargement(2) directions for shunt flow

  • 6. Endocardial cushion defect
  • 7. Ebstein’s anomaly
  • 8. Patent ductus arteriosus
  • 9. Tetralogy of Fallot
  • 10. Status, postoperative congenital heart disease
  • 11. Coarctation of the aorta

 

XI. Doppler (3%-7%)

A. General Information

B. Formulas for Measurement

  • 1. Modified Bernoulli equation
  • 2. Pressure half-time formula
  • 3. Doppler formula

C. Color Flow Mapping

Neurosonology Content Outline

I. Physics & Instrumentation (1%-5%)

A. Effects of Bone on Ultrasonic Energy

B. Effect of Transducer Frequency on Image Quality

C. Bone Induced Artifacts

D. Effect of Instrument Controls on Image Quality

 

II. Technique in Neurosonography (10%-20%)

A. Rationale for Selection of Modality, Instrument, and Transducer for a Specific Examination

B. Scan-Plane Selection and Identification

C. Adjustment of Instrument Controls

D. Recognition of Normal Anatomic Structures and Landmarks

  • 1. Cerebellum
  • 2. Cerebrum
  • 3. Brain stem
  • 4. Ventricular system

E. Examination Protocol

F. Normal Dimensions and Measurement Techniques

G. Sterile Technique in Intraoperative Examination

H. Transcranial Doppler Techniques

 

III. Anatomy & Physiology (30%-40%)

A. Bones of the Os Cranium

B. Fontanelles and External Landmarks

C. Gross Topographical Anatomy

  • 1. Cerebellum
  • 2. Cerebrum
  • 3. Brain stem
  • 4. Spinal cord

D. Membranous Partitioning of the Intracranial Space

E. Intra- and Extracranial Vascular Structures

  • 1. Normal vascular structures

F. Gray/White Matter Organization of the Brain and Cord

G. The Ventricular System

H. Origin, Flow, and Reabsorption of the Cerebrospinal Fluid

I. Principal Functional Tracts of the Central Nervous System

 

IV. Recognition of Pathology and Differential Diagnosis (40%-50%)

A. Midline Displacements

B. Space-occupying Lesions and Mass Effects in the Brain

C. Inflammatory Lesions

D. Ventricular Enlargement

E. Intra- and Extracranial Hemorrhage

F. Trauma

Ultrasound Physics and Instrumentation Content Outline

I. Elementary Principles (8%-12%)

A. Nature of Ultrasound

  • 1. Definition of sound

a. propagation of vibration(1) compression(2) rarefaction

  • 2. Differentiation between audible sound and ultrasound

B. Frequency, Wavelength, Propagation Speed

  • 1. Definition of terms
  • 2. Relationships

C. Properties of Ultrasound Waves

  • 1. Amplitude
  • 2. Pressure
  • 3. Power
  • 4. Intensity

D. Decibels

  • 1. Definition

a. related to intensity

b. related to amplitude

  • 2. Numerical examples

E. Physical Units

  • 1. Scientific notation
  • 2. Metric notation (e.g., micro, Mega)
  • 3. Common units

F. Measurement Dimensions

  • 1. Distance

a. Linear

b. Circumference

  • 2. Area
  • 3. Volume

 

II. Propagation of Ultrasound through Tissues (10%-14%)

A. Speed of Sound

  • 1. Average speed of sound in tissues
  • 2. Range of propagation speeds in the body

a. air

b. soft tissue (average)

c. soft tissue: specific tissues (e.g., muscle, fat, parenchyma)

d. bone

B. Reflection

  • 1. Characteristic of acoustic impedance - definition
  • 2. Reflection and transmission at specular interfaces

a. interface size and contour (smooth or irregular)

b. dependence on angle

c. dependence on acoustic impedance mismatch

  • 3. Scattering

a. definition of scattering

b. frequency dependence (Rayleigh scattering)

c. Interface contour (smooth or irregular)

d. contrast media

e. harmonics

C. Refraction

  • 1. Definition of refraction
  • 2. Dependence of angle
  • 3. Dependence of velocity mismatch
  • 4. Numerical example

D. Attenuation

  • 1. Definition and sources of attenuation

a. Scattering

b. Absorption

    • 1. heat
    • 2. Measurement

c. Reflection

  • 2. Typical values in soft tissue
  • 3. Variation with frequency - numerical example
  • 4. Effects on images

E. Useful Diagnostic Frequency Range

  • 1. Numerical values
  • 2. Tradeoff: penetration vs. spatial resolution

F. Terminology Associated with Image Characteristics

  • 1. Echogenic (e.g., hyperechoic, hypoechoic, anechoic, isoechoic, etc.)
  • 2. Homogeneity, Heterogeneity, etc.

3. Other

 

III. Ultrasound Transducers (17%-25%) 

A. The Piezoelectric Effect 

  • 1. Definition and concept
  • 2. Curie point
  • 3. Piezoelectric materials

B. Transducer Construction and Characteristics 

  • 1. Thickness resonance of crystal
  • 2. Operating (resonance) frequency
a. Crystal thickness 
b. Speed of sound in crystal material 
  • 3. Frequency characteristics (spectrum)
a. Bandwidth
1. Quality factor
 2. Effect of damping
 b. Multi-Hertz1. Harmonics 
  • 4. Damping
  • 5. Matching layer-numerical example

C. Sound Beam Formation - Near Field and Far Field (Fresnel and Fraunhofer Zones) 

  • 1. Interference phenomena
a. Huygen's principle
 b. diffraction (divergence)  
c. Bandwidth 
  • 2. Length of near field (focal distance)
  • 3. Shape of near field and far field
a. Beam width
 b. Natural focus 
  • 4. Dependence on frequency and crystal or aperture size

D. Axial Resolution 

  • 1. Dependence on spatial pulse length/ pulse duration
  • 2. Numerical example
  • 3. Effect of damping
  • 4. Transducer frequency spectrum-relation to pulse duration
  • 5. Bandwidth

E. Lateral Resolution 

  • 1. Dependence on beam width
  • 2. Frequency
  • 3. Transducer size and focal characteristics
  • 4. Range

F. Slice Thickness Resolution (Elevational Resolution) 

  • 1. Dependence on beam width
  • 2. Transducer array and focal characteristics
  • 3. Frequency
  • 4. Lateral and axial resolution relationship

G. Focusing 

  • 1. Methods of focusing
a. Mechanical (internal and external) 
b. Electronic (transmit and receive) 
  • 2. Focal zone characteristics
a. Focal distance (length) 
b. Focal zone region 
  • 1. Maximum intensity

H. Transducer Arrays and Image Appearance

  • 1. Mechanical and/or electronic construction
  • 2. Multiple element construction
a. Linear array 
b. Curved array 
c. Annular array 
d. Multi-dimensional array
  • 3. Multiple element operation
a. Sequenced 
b. Phased 
c. Annular  
d. Vectore. Multi-dimensional 
  • 4. Beam Steering
a. Transmission time delays 
b. Reception time delays 
  • 5. Beam focusing
a. Time delays 
b. Dynamic reception focus
 c. Multiple transmission foci 
d. Apodization 
e. Subdicing
 f. Dynamic aperture

 

I. Transducer Care and Maintenance

 

IV. Pulse Echo Instruments (6%-10%

 A. Range Equation - General Concepts 

B. Pulsing Characteristics 

  • 1. Pulse repetition frequency
  • 2. Pulse repetition period
  • 3. Pulse duration
  • 4. Spatial pulse length
  • 5. Duty factor

C. Transmitter (Output) 

  • 1. Effect of transmitter voltage on penetration
  • 2. Effect of transmitter voltage on intensity and on patient exposure

D. Receiver

  • 1. Amplification (overall gain)
  • 2. Compensation (swept gain-TGC or DGC)
a. Attenuation with range 
b. Effects on return signal and display
 c. Dynamic frequency tuning
 d. Harmonic processing
  • 3. Compression
a. Dynamic range 
1. Definition 
2. Dynamic range (receiver) 
a. Compare to other system components 
b. Numerical values (dB) 
  • 4. Demodulation
a. Rectification
 b. Smoothing (enveloping)

 

  • 5. Rejection

 

V. Principles of Pulse Echo Imaging (6%-10%) 

A. Principal Display Modes (A-mode, B-mode, 3-D, M-mode) 

  • 1. Definition of each mode
  • 2. Information displayed on each mode
  • 3. Advantages and disadvantages of each mode

B. Principles of Real-time, B-Mode Image Formation

  •  1. Relationship between echo amplitude and B-mode display
  • 2. Positioning of echoes
  • 3. Harmonics

C. Scanning Speed Limitations 

  • 1. Applications of range equation and relationship to pulsing characteristics
  • 2. Real-time systems-relationships between
a. Pulsing characteristics
 b. Frame rate and time required to generate one frame 
c. Number of lines per framed. Number of focal regionse. Field of view (e.g., sector angle)f. Image depth (penetration)

 

  • 3. Temporal resolution, ability to evaluate rapid motion



VI. Images, Storage, and Display (10%-14%) 

A. Role of scan converter 

  • 1. Image storage
  • 2. Scan Conversion

B. Digital Devices 

  • 1. Binary system
a. Terminology (bits, bytes, pixels) 
b. Discrete nature of binary numbers 
  • 2. Steps in processing echo information
a. Analog-to-digital converterb. Digital memory 
1. Spatial resolution 
a. pixels
 b. matrix 
c. Field of view 
2. Contrast resolution
 a. Size of memory
 b. Digital-to-analog converter
 c. Display devices 

C. Preprocessing versus Postprocessing

  •  1. Definition
  • 2. Preprocessing functions
a. Time (depth) gain compensation
 b. Logarithmic compression
 c. write magnification 
  • 3. Postprocessing function
a. Freeze frame
 b. Black/white inversion 
c. Read magnification 
d. Contrast variation
  • 4. Preprocessing or postprocessing functions (equipment manufacturers' discretion)
a. Persistence 
b. Frame averaging
 c. Edge enhancement 
d. Smoothing 
e. Fill-in interpolation

D. Display devices 

  • 1. TV monitors
  • 2. High resolution monitors
a. Lines and spatial resolution
 b. Brightness 
c. Contrast 
d. Frame rate 

E. Recording and Archiving Techniques 

  • 1. Video Format
a. Display (monitors) 
b. Single or multi-image cameras and laser imagers 
1. Photographic film
 2. Emulsion film
 c. Recorders 
1. Fiber-optic 
2. Videotape cassette 
d. Printer 
1. Thermal 
2. Laser  
  • 2. Digital format
a. Magneto-optical disc (digital still recorder)
 b. PACS  (Picture Achiving and communication systems) 
  • 3. Contrast and brightness control adjustments

 

  • 4. Advantages and limitations of each type



VII. Hemodynamic, Doppler, Color Flow, and Color Power Imaging (10%-14%) 

A. Hemodynamics 

  • 1. Energy gradient
  • 2. Effects of viscosity, friction, inertia
  • 3. Pressure/flow relationships
  • 4. Velocity
  • 5. Steady flow vs pulsatile flow
  • 6. Laminar versus turbulent flow
  • 7. Effects of stenosis on flow characteristics
  • 8. Venous resistance
  • 9. Hydrostatic pressure
  • 10. Pressure/volume relationship
  • 11. Effects of respiration (phasicity)

B. Doppler Physical Principles 

  • 1. Doppler Effect
a. Principle as related to sampling red blood cell movement 
b. Doppler equation
  • 2. Factors influencing the magnitude of the Doppler shift frequency
a. Range of the Doppler shift frequency 
b. Effects of beam angle, transmitted frequency, flow velocity, and flow direction 

C. Doppler Instruments 

  • 1. Continuous wave and pulsed wave Doppler
a. Differences 
b. Advantages and disadvantages of each 
1. Aliasing (Nyquist criteria) 
2. Range ambiguity 
c. Instrumentation
 1. Receiver 
2. Demodulater3
. Wall filter for clutter rejection 
4. Directional devices 
  • 2. Duplex instruments-definition and basic principles
  • 3. Spectral analysis
a. Purpose 
1. Direction 
2. Velocity 
3. Duration
 4. Character 
5. Magnitude
 b. Fast Fourier transform (FFT) 
c. Diagnostic measurements (indices-i.e., pulsatility, resistive) 

D. Color Flow Imaging 

  • 1. Basic Principles
a. Sampling methods 
b. Display of Doppler information 
1. Reflector direction 
2. Average velocity 
3. Velocity variance 
c. Advantages and limitations 
  • 2. Instrumentation
a. Autocorrelation 
b. Time domain processing 
c. Color field size and frame rate 
1. Ensemble length (packet size, pulse packet) 
2. Line density 
3. Maximum depthd. Color maps, assignment, or coding
 1. Hue 
2. Saturation 
3. Luminance (significance, brightness, intensity) 
e. Artifacts (see section VIII)

E. Color Power (Energy) Mode

  • 1. Displayed information

 

  • 2. Advantages and limitations



VIII. Artifacts (6%-10%)

A. Definition of Artifacts

B. Artifact Recognition in Performing and Interpreting Examinations

  • 1. Echoes not representing actual interfaces
  • 2. Missing echoes
  • 3. Misrepresented interface location
  • 4. Misrepresented interface amplitude

C. Artifacts Associated with Resolution and Propagation (Axial Resolution, Lateral Resolution, Section Thickness, Acoustic Speckle)

  • 1. Definitions
  • 2. Mechanisms of Production
  • 3. Appearance

D. Artifacts Associated with Propagation (Reverberation, Comet-tail, Ring-down, Mirror Image, Multipath, Side Lobes, Grating Lobes, Refraction, Speed Error; and Range Ambiguity)

  • 1. Definitions
  • 2. Mechanisms of Production
  • 3. Appearance

E. Artifacts Associated with Attenuation (Shadowing, Enhancement, and Focal Enhancement or Focal Banding)

  • 1. Definitions
  • 2. Mechanisms of Production
  • 3. Appearance

F. Artifacts Associated with Doppler and Color Flow Instrumentation (Aliasing, Slice Thickness, Reverberation, Mirror Imaging, Ghosting or Flash, Registration, Incident Beam Angle, and Clutter)

  • 1. Definitions
  • 2. Mechanisms of Production
  • 3. Appearance

G. Other (Electronic Noise, Equipment Malfunction)

  • 1. Definitions
  • 2. Mechanisms of Production
  • 3. Appearance

 

H. Artifact Effects on Measurements (velocity or speed error and range ambiguity)

 

IX. Quality Assurance of Ultrasound Instruments (4%-8%)

A. General Concepts Regarding the Need for and Nature of a Quality Assurance Program

B. Methods for Evaluating Instrument Performance

  • 1. Test objects
  • 2. Phantoms (tissue, Doppler, flow)

C. Parameters to Be Evaluated

  • 1. Test object
a. Dead zone
b. Axial resolution and lateral resolution (beam width)
c. Depth calibration accuracy
d. TGC characteristics
e. Uniformity
f. System sensitivity
  • 2. Tissue equivalent (mimicking) phantom
a. Dead zone
b. Depth calibration accuracy
c. Lateral (horizontal) distance measurement accuracy
d. Axial, lateral, and section thickness (elevational) resolution
e. TGC characteristics
f. System sensitivity
g. Dynamic range
h. Contrast resolution
i. Lesion detection
  • 3. Doppler flow, string, or belt phantomsa
a. Maximum depth
b. Pulsed Doppler sample volume alignment (gate position accuracy)
c. Velocity accuracy
d. Color flow penetration
e. Image congruency test

D. Preventive Maintenance

  • 1. Standard precautions
a. Equipment
1. Cleaning
2. Disinfecting
3. Sterilization

E. Record Keeping

F. Statistical Indices

  • 1. Sensitivity/specificity
  • 2. Negative/positive predictive value

 

  • 3. Accuracy


X. Bioeffects and Safety (6%-10%)

A. Acoustic Output Quantities

  • 1. Pressure
a. Units (MPa, mmHg)
b. Peak pressures (compression, rarefaction)
c. Methods of determining pressure (miniature hydrophone)
  • 2. Power
a. Units (mW)
b. Methods of determining power (radiation force, hydrophone)
  • 3. Intensity
a. Units (mW/cm2, W/cm2)
b. Spatial and temporal considerations
c. Average and peak intensities
d. Methods of determining intensity (hydrophones)
e. Common intensities(1) SATA(2) SPTA(3) SPPA(4) SPTP
  • 4. Intensity and power values for different operating modes

B. Acoustic Output Labeling Standard

  • 1. Thermal index
a. TIS
b. TIB
c. TIC
  • 2. Mechanical index

C. Acoustic Exposure

  • 1. Definition and concepts of prudent use (ALARA)
  • 2. Methods of reducing acoustic exposure

D. Primary Mechanisms of Biologic Effect Production

  • 1. Cavitation mechanisms: relevant acoustic parameters
  • 2. Thermal mechanisms: relevant acoustic parameters

E. Experimental Biological Effect Studies

  • 1. Animal studies
  • 2. In vitro studies
  • 3. Epidemiologic studies
a. Limitations

 

 

 

 

Vascular Physical Principles and Instrumentation Content Outline

I Ultrasound Physics (35%-45%)

A. Definition of Sound (6%-10%)

  • 1. Sound vs. ultrasound
  • 2. Propagation velocity
  • 3. Frequency
  • 4. Wavelength
  • 5. Frequency vs. depth
  • 6. Frequency ranges

B. Propagation of Sound in Tissue (6%-10%)

  • 1. Speed of sound through tissue: air, bone, soft tissue
  • 2. Speed of sound through blood
  • 3. Acoustic impedance
  • 4. Reflection
  • 5. Refraction
  • 6. Absorption
  • 7. Attenuation

C. Transducers: Ultrasound (6%-10%)

  • 1. Piezoelectric effect
  • 2. Transducer characteristics
  • 3. Sound beam characteristics
a. effect of beam diameter on resolution
b. effect of transducer frequency on beam characteristics
c. beam focusing
d. near field
e. far field
  • 4. Lateral resolution
  • 5. Axial resolution
  • 6. Mechanical transducers
  • 7. Electronic transducers

D. Doppler Signal Processing (6%-10%)

  • 1. Doppler effect
  • 2. Doppler frequency shift
  • 3. Effect of transmitting frequency on Doppler frequency shift
  • 4. Effect of insonation angle on Doppler frequency shift
  • 5. Reflector speed (velocity)
  • 6. Extracting the Doppler signal
  • 7. Audible Doppler signal analysis
  • 8. Analog Doppler waveform generation
  • 9. Spectral display characteristics
  • 10. Sample volume size
  • 11. Aliasing

E. Doppler Instruments (6%-10%)

  • 1. Continuous wave instruments
  • 2. Pulsed wave instruments
  • 3. Bidirectional Doppler
  • 4. Unidirectional Doppler
  • 5. Color flow

  • 6. Transcranial



II. Ultrasonic Imaging (15%-25%)

A. Imaging Principles (10%-14%)

  • 1. A-mode: definition
  • 2. B-mode: definition
  • 3. Real-time: definition
  • 4. Gray scale display
  • 5. Dynamic range
  • 6. Frame rate
  • 7. Scan converter
  • 8. Gain
  • 9. Time gain compensation
  • 10. Recording techniques
a. multi-imaging camera
b. video tape
c. thermal video printer
d. digital storage
  • 11. Duplex instrumentation
  • 12. Image resolution

B. Imaging Artifacts (6%-10%)

  • 1. Artifact: definition
  • 2. Origin of artifacts: technique
  • 3. Origin of artifacts: instrumentation
  • 4. Enhancement
  • 5. Multiple reflections
  • 6. Reverberation
  • 7. Shadowing

 

  • 8. Refraction



III. Physiology & Fluid Dynamic (10%-20%)

A. Arterial Hemodynamics (7% -11%)

  • 1. Energy gradient
  • 2. Effects of viscosity, friction, inertia
  • 3. Pressure/flow relationships
a. Poiseuille’s law
b. Bernoulli’s principle
  • 4. Velocity
  • 5. Steady flow vs. pulsatile flow
  • 6. Effects of stenosis on flow characteristics
a. direction, turbulence, disturbed flow
b. velocity acceleration
c. entrance/exit effectsd. diameter reduction
e. peripheral resistance
f. collateral effects
g. effects of exercise
h. occlusion

B. Venous Hemodynamics (4%-8%)

  • 1. Venous resistance
  • 2. Hydrostatic pressure
  • 3. Pressure/volume relationship
  • 4. Effects of edema
  • 5. Effects of muscle pump mechanism
a. at rest
b. contraction
c. relaxation

C. Other (0%-3%)

  • 1. Arteriovenous fistula (traumatic, congenital, access dialysis)

 

  • 2. Trauma (pseudoaneurysm)

 



IV. Ultrasound Safety & Quality Assurance (3%-7%)

A. Instrument Performance (2%-6%)

  • 1. Evaluation of image quality
  • 2. Evaluation of Doppler quality
  • 3. Preventive maintenance

B. Biological Effects (0%-3%)

  • 1. Minimizing exposure time
  • 2. Mechanisms of production
  • 3. Scientific data
  • 4. Preventing electrical hazards



AAVR-"Certifying Responsible Imaging"

Rad-Rounds